Fractional and integer matchings in uniform hypergraphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional and integer matchings in uniform hypergraphs

A conjecture of Erdős from 1965 suggests the minimum number of edges in a kuniform hypergraph on n vertices which forces a matching of size t, where t ≤ n/k. Our main result verifies this conjecture asymptotically, for all t < 0.48n/k. This gives an approximate answer to a question of Huang, Loh and Sudakov, who proved the conjecture for t ≤ n/3k. As a consequence of our result, we extend bound...

متن کامل

Maximum degree and fractional matchings in uniform hypergraphs

--avs subject classification (1980): 05 C 65, 05 C 35; 05 B 25 Let 3f be a family of r-subsets of a finite set X. Set D(/{):max|{E: xQE€lf,}|, (maximum degree). We say that 3/f, is intersecting if for any H, H,€;( .we Itave _H ) E, #0. In this case, obuiő".rí, ottj=tcfÍh. According to a well-known conjec1ule D9r)=|ű.|l(r-|*1lr). We proveísügiítiíströnger result .Let /f, beanr-uniform, intersect...

متن کامل

Integer and fractional packings in dense 3-uniform hypergraphs

Let 0 be any fixed 3-uniform hypergraph. For a 3-uniform hypergraph we define 0( ) to be the maximum size of a set of pairwise triple-disjoint copies of 0 in . We say a function from the set of copies of 0 in to [0, 1] is a fractional 0-packing of if ¥ e ( ) 1 for every triple e of . Then * 0( ) is defined to be the maximum value of ¥ 0 over all fractional 0-packings of . We show that * 0( ) 0(...

متن کامل

Matchings in 3-uniform hypergraphs

We determine the minimum vertex degree that ensures a perfect matching in a 3-uniform hypergraph. More precisely, suppose thatH is a sufficiently large 3-uniform hypergraph whose order n is divisible by 3. If the minimum vertex degree of H is greater than ( n−1 2 )

متن کامل

Perfect matchings in 4-uniform hypergraphs

A perfect matching in a 4-uniform hypergraph is a subset of b4 c disjoint edges. We prove that if H is a sufficiently large 4-uniform hypergraph on n = 4k vertices such that every vertex belongs to more than ( n−1 3 ) − ( 3n/4 3 ) edges then H contains a perfect matching. This bound is tight and settles a conjecture of Hán, Person and Schacht.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2014

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2013.11.006